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References for mean January temperatures in Europe and percentage of households in
temperature bands

1. World Bank Group, Climate Change Knowledge Portal,
https://climateknowledgeportal.worldbank.org/, accessed 18 April 2023.

2. Eurostat, Number of households by household composition, number of children and age of youngest
child, https://ec.europa.eu/eurostat/databrowser/view/LFST _HHNHTYCH/default/table?lang=en,
accessed 18 April 2023.

References for Figure 1

1. European Heat Pump Association (2023). Heat pump record: 3 million units sold in 2022, contributing
to REPowerEU targets. European Heat Pump Association.
https://www.ehpa.org/press_releases/heat-pump-record-3-million-units-sold-in-2022-contributing-
to-repowereu-targets/.

2. IEA Weather for Energy Tracker — Data Tools. IEA. https://www.iea.org/data-and-statistics/data-
tools/weather-for-energy-tracker.

Description of compiled datasets shown in Figure 2

In Switzerland [CH], field tests were carried out in 14 different buildings to evaluate air/water heat
pump performance over a full heating season. All systems saw COPs well above 2, even between 3 and
4, around 0°C.

Field tests in southwestern Germany [DE] showed the performance of air/water heat pumps in
residential applications. The heat pumps had COPs above 3 even hovering around 0°C and on the coldest
day, a COP of 2.4 at -10°C.

In the United Kingdom in [UK], some of the country’s coldest days with average temperatures reaching -
6°C found only a marginal decline in air-source heat pump performance. Although these data contain
some outlying datapoints with COPs less than 2 around 0°C, overall, the median COP was 2.4 during the
coldest day of the monitoring period for all homes.

In the United States’ [US1], 43 homes in the states of New York and Massachusetts were set up with
monitoring equipment to evaluate the performance of cold-climate air-to-air heat pumps during real-
world cold-weather conditions. Monitoring results showed average COPs around 2.5 when
temperatures fell below freezing.

i The authors of this study note that the data collected were not large enough to be statistically significant.



In-field performance testing of an air-source heat pump was carried out during the winter in a well-
insulated house in Ontario, Canada [CA]. At the lowest outside air temperature of -19°C, COP was
around 1.8, while it reached 5.0 at 9°C. Between -10°C and 0°C, COP averaged 2.75.

In China [CN], a three-month field test of an air-source heat pump system was conducted in one of the
country’s coldest regions. The system was able to meet the heating demand, even when the ambient
temperature fell to -24°C. In mild cold climate conditions, between 5°C and -10°C, COP averaged 2.4.

Also in the United States [US2], field testing was conducted of cold-climate heat pumps in Connecticut
which saw COPs above 2.5 below freezing and as high as 2.3 when daily average outside temperatures
dropped to -15°C.

Due to their large sizes, the datasets CH and CN were downsampled to 500 measurements to make
them more comparable to the other data. This reduced the weight of these samples in the aggregate,
but their individual distributions remain the same.

Tables summarizing performance of heat pumps in mild and extreme cold climates

Table 1. Performance summary for heat pumps in mild cold climates

Study Average COP measured when outside temperature was
between -10°C and 5°C

[CH] - Switzerland 3.2

[DE] — Germany 3.7

[UK] — United Kingdom 2.5

[US1] — United States, NY and MA 2.5
[CA] — Canada 3.3

[CN] — China 2.4

[US2] — United States, Connecticut 2.7

Table 2. Performance summary for heat pumps in extreme cold climates

Study  Minimum Temperature (°C) COP at Minimum Temperature
[FI] — Mitsubishi — MSZ-RW25VG -30 1.5-2.0
[FI] — Toshiba — RAS-25N4KVPG -30 1.0-1.5
[US3] — United States, Minnesota -12 1.3
[US4] — United States, Alaska -35 1.8

Clarifying note on heat pump performance

It is worth noting that there can be a significant range of performance across heat pumps models, due in
part to the device design and in the software used to operate them. Analysing average efficiency can risk
obscuring the extremes of performance and this should be considered when selecting a heat pump
model that is appropriate for certain climate conditions and heating demands.



Additional information on performance enhancements for heat pumps

Strategies to enhance heat pump performance include avoiding low compressor speeds and periodically
increasing speed to supply lubricant, as well as cycle enhancement, a process that increases evaporator
capacity without compromising heat pump delivery temperature.

The following figures illustrate potential enhanced cycle options, whose benefits vary according to
operating temperatures and refrigerant characteristics.
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Figure 2: Heat Pump Cycle Enhancements

A popular approach is the use of vapour injection, where the refrigerant flow is split into two portions:
the larger portion of flow works between the condensing and evaporating pressures as in a single-stage
cycle, while the smaller portion of flow only works between the condensing and intermediate pressures.
Thus, with not all the refrigerant flow across the whole temperature lift, performance is improved.
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Resources referenced in the study

CH: Prinzing, M., Berthold, M., Bertsch, S., and Eschmann, M. (2021). Feldmessungen von
Wiarmepumpen-Anlagen 2020/21 (EnergieSchweiz).

DE: Lammle, M., Bongs, C., Wapler, J., Glinther, D., Hess, S., Kropp, M., and Herkel, S. (2022).
Performance of air and ground source heat pumps retrofitted to radiator heating systems and measures
to reduce space heating temperatures in existing buildings. Energy 242, 122952.
10.1016/j.energy.2021.122952.

UK: Energy Systems Catapult (2023). Electrification of Heat - Interim Heat Pump Performance Data
Analysis Report. https://es.catapult.org.uk/report/electrification-of-heat-interim-heat-pump-
performance-data-analysis-report/.

US1: The Cadmus Group (2022). Residential ccASHP Building Electrification Study.
https://edthefuture.org/deep-dive-research-heat-pump-building-electrification/.

CA: Safa, A.A,, Fung, A.S., and Kumar, R. (2015). Performance of two-stage variable capacity air source
heat pump: Field performance results and TRNSYS simulation. Energy and Buildings 94, 80-90.
10.1016/j.enbuild.2015.02.041.

CN: Wu, C,, Liu, F., Li, X., Wang, Z., Xu, Z., Zhao, W., Yang, Y., Wu, P., Xu, C., and Wang, Y. (2022). Low-
temperature air source heat pump system for heating in severely cold area: Long-term applicability
evaluation. Building and Environment 208, 108594. 10.1016/].buildenv.2021.108594.

US2: Johnson, R.K. (2013). Measured Performance of a Low Temperature Air Source Heat Pump (United
States Department of Energy) 10.2172/1260317.

Fl: SCANOFFICE (2022). VTT:n testiraportit | IImalamp6pumppuvertailu. Scanoffice.
https://scanoffice.fi/vttn-testiraportit-ilmalampopumppuvertailu/.

US3: Schoenbauer, B., Bohac, D., and Kushler, M. (2017). Cold Climate Air Source Heat Pump Field
Assessment. Center for Energy and Environment. https://www.mncee.org/cold-climate-air-source-heat-
pump-field-assessment.

US4: Shen, B., Baxter, V., Abdelaziz, O., and Rice, K. (2017). CCHP — Finalize field testing of cold climate
heat pump (CCHP) based on tandem vapor injection compressors. http://cchrc.org/media/FY17-CCHP-
2nd-milestone-report_v4.pdf.
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